Morphology of PbSO₄ formed on solid Pb in concentrated sulphuric acid: a note pertaining to a recent paper

J. A. BIALACKI, N. A. HAMPSON

Chemistry Department, University of Technology, Loughborough, Leicestershire, LE11 3TU, UK

K. PETERS, A. K. WILLIAMS

Chloride Technical Ltd, Wynne Avenue, Swinton, Manchester, M27 2HB, UK

Received 2 June 1982

A scanning electron microscopy (SEM) study of the formation of $PbSO_4$ on Pb in H_2SO_4 at concentrations greater than 5 mol dm⁻³ is presented. The production of a tight and mechanically sound $PbSO_4$ film in concentrated H_2SO_4 postulated in an earlier communication is confirmed.

1. Introduction

Recently [1] we investigated the behaviour of PbO₂ in concentrations of H_2SO_4 in excess of 5 mol dm⁻³. This was approached by carrying out linear sweep voltammetry (LSV) on pure solid lead in different high concentrations of sulphuric acid at a series of sweep rates (10–100 mV s⁻¹). It was found that the maximum peak current values (i_p), and hence the charge values, decreased dramatically in passing from 5 mol dm⁻³ to 10 mol dm⁻³ H₂SO₄. This indicated that as the concentration of sulphuric acid was increased the form of the lead sulphate film became passivated at a smaller deposit thickness.

In this note we show photographic evidence in support of our electrochemical data.

2. Experimental procedure

The computer-controlled experimental set-up and electrode preparation have been described in previous publications [1, 2]. The linear sweep experiments were carried out at $23 \pm 1^{\circ}$ C with a Hg/Hg₂SO₄ reference electrode which was in the same H₂SO₄ electrolyte solution as the working electrode. The pure lead electrodes were cycled to a constant response between the limits 550 mV and 1550 mV, finally being held in the PbSO₄ region (550 mV). Again, the time needed for con-

stancy was approximately 1.5 h. The sweep-speed, ν was kept constant, that is, $\nu = 100 \text{ mV s}^{-1}$.

The experiments were performed in 5.0, 7.0 and 10.0 mol dm^{-3} sulphuric acid on pure lead rods (diameter = 0.3 cm) shrouded in Teflon in the form of stubs which screwed into the end of the rotating disc electrode [3]. After the electro-chemistry had been carried out at the solid electrode, the electrodes were washed with tri-distilled water, rinsed with acetone and stored in a vacuum desiccator. For SEM observations the stubs were coated with a thin layer of gold by diode sputtering and examination was performed using a Jeol JSM 35 scanning electron microscope.

3. Results and discussion

Figure 1 shows the surface morphology of a pure lead electrode after redox cycling for 1.5 h in $5.0 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4$. The final potential was 550 mV (PbSO₄ region). The prismatic PbSO₄ crystals are clearly visible and are dispersed on the surface of the electrode in an irregular fashion. Figure 2 displays the effect of increasing the concentration of the sulphuric acid electrolyte on the PbSO₄ crystals formed on the Pb electrode. Hence at 7 mol dm⁻³ H₂SO₄ the crystals become smaller, deformed and more compact, producing a tighter layer on the surface of the electrode. This is in accordance with what we published recently [1]

Fig. 1. $5 \mod dm^{-3} H_2 SO_4$ electrolyte: Front of flat lead electrode after potentiodynamic cycling (550–1550 mV) for 1.5 h, ending at 550 mV.

suggesting that the $PbSO_4$ film becomes mechanically sound and tighter on the electrode.

At 10 mol dm⁻³ H_2SO_4 Fig. 3 shows that the PbSO₄ crystals become even smaller and are packed much closer together to give a very densely packed film of lead sulphate. Hence the

Fig. 2. As Fig. 1 but in 7 mol dm^{-3} H₂SO₄ electrolyte.

Fig. 3. As Fig. 1 but in 10 mol dm⁻³ H_2SO_4 electrolyte.

charge output of the PbO₂ electrode is drastically reduced in concentrated sulphuric acid because the mechanically sound film of PbSO₄ becomes very passivating and effectively resists oxidation to PbO₂ on cycling potentiodynamically between the PbO₂ and PbSO₄ regions.

The important conclusion of this note is that in H_2SO_4 concentrations > 5 mol dm⁻³ the PbSO₄ crystals become much smaller forming a tighter and passivating film.

Acknowledgement

We wish to thank the directors of Chloride Technical Ltd for financial support (J.A.B.).

References

- [1] J. A. Bialacki, N. A. Hampson and K. Peters, J. *Appl. Electrochem.* (in press).
- [2] N. A. Hampson, S. Kelly and K. Peters, J. Appl. Electrochem. 10 (1980) 91.
- [3] N. A. Hampson, S. Kelly, K. Peters and P. Whyatt, J. Appl. Electrochem. 10 (1980) 597.